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Spontaneous Emission of a Two-Level System 
and the Influence of the Rotating-Wave Approximation 
on the Final State. I. 
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By using a modified Robertson projection technique an exact equation of 
motion for the expectation value of the population inversion operator S z of a 
single two-level atom in the case of spontaneous emission is derived. Afterwards, 
by making the Markov approximation, it is shown that the ground state 
expectation value (SZ)t = - 1/2 for t--~ oe will be reached only if the rotating- 
wave approximation or the Born approximation is made additionally. 
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1. INTRODUCTION 

In this work we will examine the interesting question of whether a single 
two-level atom being in its excited state really decays to its unperturbed 
ground state by spontaneous emission. It seems to us that the answer to this 
question is not quite clear in the literature. Most of the textbooks, review 
works, and articles (see, e.g., Refs. 1-4), beginning with the famous Weiss- 
kopf-Wigner (5) article, treat this question only in the rotating-wave ap- 
proximation (RWA), i.e., neglecting the antiresonant terms in the Hamilto- 
nian, and/or  in the second-order perturbation theory, the so-called Born 
approximation (BA). They all came to the conclusion that the final state of 
the atom is its unperturbed ground state. However, we will show that this is 
correct only as long as the RWA and/or  the BA is made. 

1 Institut fiir Theoretische Physik, Technische Universit/it Wien, Karlsplatz 13, A-1040 Vi- 
enna, Austria. 

223 
0022-4715/83/1000-0223503.00/0 �9 1983 Plenum Publishing Corporation 



224 Seke 

In Section 2, by using a modified Robertson (6) projection technique 
developed in Refs. 7 and 8 recently, we will derive an exact equation of 
motion (EM) for the expectation value (EV) of the atomic population 
inversion operator S z. Afterwards, by making the Markov approximation 
and the long-time limit, but without making any kind of approximation as 
to the strength of the interaction with the radiation field, we shall obtain a 
differential equation, whose solution shows that the ground state EV 
( S ~ ) t ~  = - 1 / 2  will be reached only if the RWA, or the BA is made 
additionally. 

In Section 3, by using the nondecay probability (9'm) we will examine 
the reasonableness of the results obtained in Section 2. 

In the Appendix we will show that the dipole moment (S  -+ )~ remains 
zero if it was zero initially. 

. CLOSED EQUATION OF MOTION FOR SPONTANEOUS 
EMISSION OF A SINGLE TWO-LEVEL ATOM 

The Hamiltonian for a single two-level atom (system S) interacting 
with the radiation field (system R) is given by (2'3) 

H = H o + HSR = ~oS z @ IR + IS | ~ + - 03 k a ks a ks 
ks  

+ ( S  + - S - ) |  ~ ( g k s a ~  - * + g~aks ), ( h =  1) (1) 
ks 

where S ~ = �89 - [2)(2[) is the population inversion operator, S § = 
[1)(2[, S -  = [2)(1[ are the dipole moment operators with [1), [2) being the 
atomic excited and ground state, a~ are the photon creation and anni- 
hilation operators for the mode ks, and g~ = -ie(2~r/~kL3)l/2(D12 �9 e ~ )  

is the coupling constant with Dl2 as the dipole matrix element, eks as the 
polarization vector (s is the polarization index), and L 3 as the volume of the 
field. Further, ~0 is the energy separation of the two atomic levels, 0~ k = kc 

and I s ,  I R are the unit operators in the Hilbert spaces ~ s  and ~ R  of 
systems S and R. 

At t = 0, we assume that the atom is in the excited state and the 
radiation field in the vacuum state: 

0(0) = Ps (0) | 0,~ (0) 

= [1 ) ( l l  | [ ( 0 ) ) ( ( 0 ) l  (2) 

where p(t)  is the statistical density operator, which satisfies the Liouville 
(von Neumann) equation, and ps ( t )=  TrR0(t ), p g ( t ) = T r s P ( t  ) are the 
reduced density operators. 

By introducing the generalized canonical density operator for S, (8) 

Os(t  ) = �89 s + 2 S z ( S Z ) ,  (3) 
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where we made use of the fact that the dipole moment ( S  +- )t remains zero, 
if it was zero initially (see the exact proof in the Appendix), we can write 

as(t) | OR (0) = Po(t) + �89 | OR (0) (4) 

PA = On (0) @ 2S~Trsn (SZA) (5) 

with any operator A in the product space ~'~s | S R -  By using the 
modified Robertson projection-operator technique, (7'6) i.e., by differenti- 
ating and transforming Eq. (4), and afterwards integrating it by applying an 
integrating operator T(t, t'), we obtain a connecting equation between O(t) 
and as(t ) | On(0): 

o(t) - as (t) | OR (0) = - i fotdt' r ( t ,  t ')(I - P )(L o + LsR )o s (t') | On (0) 

(6) 
with 

T(t, t ' )  = exp[ - i ( t  - t ')(I - P ) ( L  o + Lsn)] (7) 

and I = I s | In, L 0 = [H 0 . . . .  ], Lsn = [Hsn . . . .  ]. 
We now let the operator iS~(Lo + Lsn ) act upon Eq. (6) and after- 

wards take the trace over it, which gives us an exact closed EM for the 
EV (SZ) ,  : 

0 ( s %  
- (8) 

with 

k, (~-) = TrsR [ U(~-, 0) Lsn �89 I s | OR (0) ] (9) 

k2(~-) = TrsR [ U(~-, 0) LsR S z | OR (0) ] ( 1 O) 

8(~-, 0) = SZLsn U('r, O)e -ir176 (1 l) 

U(~-,0) = Y e x p [ - i f o * d t ' ( I - P ) e - i " L O L s R e  u'Lo] (12) 

where we made an expansion of T(t, t') in powers of the interaction HSR by 
using a time-ordering operator 3 -  and the fact that P commutates 
with/4o- 

The RWA on the Hamiltonian HSR of Eq. (1), i.e., the neglecting of 
the antiresonant terms S -  | ak~ and S + | a~ gives 

LRwA_ , | 0n (0) = L WAs  | 0n (0) (13) S R  2 ~S 

and 
klRWA(~ ") = kRWA(~ -) (14) 

By taking the limit V--~ ~ (i.e., replacing the summation over k by an 
integral), and making the Markov approximation with long-time limit [i.e., 
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in integrand of Eq. (8) (SZ) t_~ is replaced by ( S ~ ) t  and for t >> 1/~0 the 
upper limit of the time integration is replaced by oo by introducing a 
damping factor e -'~, where E ~ + 0  after performing the integration], and 
retaining all order of interaction we obtain 

o ( s %  
- ~lWA(1 + 2 ( S ~ ) , )  (15) 

at 

( S ~ ) t  = - �89 + ce -2~W't, c = const (16) 

/q. = lim (~d~'e-r162 i =  1,2 (17) 
c___> + 0  j O  - . 

In the literature e is usually calculated from the initial condition. 
When no RWA is made then 

LsR S~ | OR (0) = LsR �89 I s | OR (0) 

and 

- E (g~S - | {o}><{0}la~ - gLS + | {0))((0} I) 
k s  

(18) 

~ E =  171- 172 

= lim (~d ' re  -~" 
r Jo 

• Tr sR { ( LsRS ~ ) U(% O) ~ [ g~e* - i (~  +~)r + 
ks 

| g ~ e ~ ( ~ + ~ r  

| (19) 

In the BA U(% 0) = I, and only the antiresonant terms with e +-i(~k +~)r play 
a role: 

A p A  = ~ I g~128(,ok + ,o) = 0 (20) 
k s  

because r > 0 and ~0k >/0. But in an approximation of higher order than 
the BA it can easily be shown that the terms in U0-,0) give rise to a 
nonzero value of A/~, i.e.,/71 v a/~2. Then instead of Eq. (16) we have 

( s %  171 - = _ _ _  + cl e-2k2t, c I = const (21) 
2~2 

From this it can be followed that if no RWA or BA is made, the atom 
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initially in its excited state does not decay to its unperturbed ground state, 
i.e., (S~)t_~oo @ - 1/2, which means (S~)t_~oo > - 1/2. 

An interesting fact, which is being often overlooked, is that the state 
Iff(0)) = 12) @ I{0}), in which the atom is in its ground state 12), is not a 
stationary state because [H0, HsR ] =/= O. Knowing this it can be immediately 
seen from Eq. (21) that for the above initial condition ((S~)0 = - 1 / 2 ) ,  
/T1 @/~2, because for /~i =/~2 the solution of Eq. (21) would be a steady 
state value: (S~) t  = -  1/2. This means that only in the RWA it will 
be (S~)t~oo = - 1/2, because [ H 0 , H ~  wA] = 0, but otherwise (S~),__,oo > 
- 1 / 2 .  

3. THE NONDECAY PROBABILITY OF THE INITIAL STATE 

That the results obtained in Section 2 are reasonable can easily be seen 
by examining the nondecay probability (93~ of the initial state 1~(0)) of 
system S + R. The condition for the decay of the initial state is (9'1~ 

l i m  I<q,(o) I q,(t)>12= 0 (22) 

(As pointed out by Krylov and Fock (9) the vanishing of the nondecay 
probability of an unstable state at the infinity follows from the Riemann-  
Lebesgue lemma.) 

The decay condition can be fulfilled by the general state vector 

[ l ~ ( t  - - ~  0 0 ) ~  m~ ~ ~ C a n , n 2 . . . n i . . . ( l - f f O 0 )  
a = 1 , 2  n l, n2 , . . . ,  ni, . . . = 0  

• la~ | Inln2.. .  n i . . .  ~ (23) 
co 

1 = (@(t)  l@(t ) )  -- ~ ~ [c~.,. 2 ..... ... (012 (24) 
a = l , 2  ~ / i , / ' / 2 ,  . . . , ~/i, �9 . �9 = 0  

with Cl{o}(t~ oo) = 0 and a + ~;~0ni = 2l + 1, l = 0, 1,2 . . . .  for the atom 
being initially in its excited state [~p(0))= I1) |  I{0}). e , , , ,2 . . . , , . . .  (t) are 
the probability amplitudes, ni is the number of photons in i mode, and each 
i = 1,2 . . . .  stands for a ks mode. 

But in the case of the RWA it holds that 

~ n i =  a - -  1, a = 1,2 (25) 
i = 0  

According to this, for the decay of I~p(0)} = I1} | I{0)~, it must hold that 
c~,,~ . . . .  ,--- (t ~ co) = 0 for all n i. This means that the atom must decay to 
its unperturbed ground state. In the RWA the ground state 12~ is a steady 
state. 
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4. CONCLUSION 

In Section 2 it was derived a closed EM for the energy of a single 
two-level atom, interacting with the vacuum radiation field, in the exact 
and Markov approximated form. Naturally, Eq. (21) is only exact in the 
Markov approximation and the exponential behavior of (SZ)t is an ap- 
proximation, as was pointed out by Khalfin. (1~ But just this Markov 
approximation makes it possible to show that there is a radiative correction 
to the ground state of the atom, when no kind of RWA is made. This 
radiative correction has the consequence that the final state of the atom is 
not its unperturbed ground state, as is usually expected in the literature, but 
the radiative corrected ground state. In the subsequent paper we will show 
that in the BA there is a radiative correction to the final state of the atom. 
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APPENDIX 

In the case of spontaneous emission we will exactly show that if the 
dipole moment of the atom was zero initially (i.e., the atom is in the excited 
or in the ground state), it remains zero for all future times. 

For the initial condition 

Os(O) = [1)(ll, or Os(O) = [2)(21 (A1) 

it can easily be shown that 

(S  -+ )o -- TrsR[ S -+ Os (0) ] = 0 

Trs[ S +- L~Os(O) ] = O, 
Trn[ L2~+'pn (01 ] = TrR[ L2~+ tl {0})({0} I ], 

= 0  

From this and the formal solution of the Liouville (von Neumann) equa- 
tion: 

o(t)=e-i'L~176 e-iCC~174 ) (A5) 

(A2) 

1 = 0 , 1 , 2 , . . .  (A3) 

l =  0, 1,2 . . . .  

(a4)  
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it follows that 
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(A6) 
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